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Abstract

Learning from Demonstration (LfD) seeks to democratize
robotics by enabling non-roboticist end-users to teach robots
to perform novel tasks by providing demonstrations. How-
ever, as demonstrators are typically non-experts, modern LfD
techniques are unable to produce policies much better than
the suboptimal demonstration. A previously-proposed frame-
work, SSRR, has shown success in learning from subopti-
mal demonstration but relies on noise-injected trajectories
to infer an idealized reward function. A random approach
such as noise-injection to generate trajectories has two key
drawbacks: 1) Performance degradation could be random de-
pending on whether the noise is applied to vital states and
2) Noise-injection generated trajectories may have limited
suboptimality and therefore will not accurately represent the
whole scope of suboptimality. We present Systematic Self-
Supervised Reward Regression, S3RR, to investigate system-
atic alternatives for trajectory degradation. We carry out em-
pirical evaluations and find S3RR can learn comparable or
better reward correlation with ground-truth against a state-of-
the-art learning from suboptimal demonstration framework.

Introduction
The field of Learning from Demonstration (LfD) seeks to
democratize access to robotic assistance by empowering
end-users to teach robots by demonstrations, avoiding the
need for an army of engineers to manually program and test
robots for every task (Seraj and Gombolay 2020). Due to
the democratized access via LfD, applications ranging from
healthcare (Gombolay et al. 2018), manufacturing (Wang
and Gombolay 2020), auto-pilot (Pan et al. 2018), to as-
sistive jobs (Bhattacharjee et al. 2019) have been able to
take advantage of expert users in robot learning. However,
demonstrations from real end-users are typically suboptimal
due to limited cognitive abilities (Newell and Simon 1972;
Nikolaidis et al. 2017), inhibiting robot learning frameworks
from using direct imitation learning (Chernova and Thomaz
2014; Ross, Gordon, and Bagnell 2011; Paleja et al. 2020),
which learns a direct mapping from a state to the demon-
strated action, and therefore only imitates the behavior rather
than discovering the latent objective of the demonstrator.
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Inverse Reinforcement Learning (IRL) (Ng, Russell et al.
2000; Chen et al. 2020) on the other hand, infers the demon-
strator’s underlying objective. With the objective repre-
sented as a reward function, Reinforcement Learning (RL)
can find a policy accomplishing the desired goal. How-
ever, similar to imitation learning, classic IRL approaches
(Abbeel and Ng 2004; Gombolay et al. 2016) rely on
the assumption that the demonstration provided is optimal.
Maximum-entropy IRL (Ziebart et al. 2008) and Bayesian
IRL (Ramachandran and Amir 2007) relax this to stochastic
optimality, but in general, it cannot produce a much better
policy than the suboptimal demonstrations, limiting the ap-
plicability of LfD with naı̈ve users.

Drawing inspiration from Preference-based Reinforce-
ment Learning (Wirth et al. 2017), D-REX (Brown, Goo,
and Niekum 2019) and SSRR (Chen et al. 2020) have de-
veloped successful learning from suboptimal demonstration
frameworks that utilize a performance degradation across
noisy trajectories to recover the demonstrator’s latent ob-
jective. SSRR (Chen et al. 2020) set the state-of-the-art
by first utilizing self-supervision to create new trajectories
via noise-injection while simultaneously estimating the re-
ward for each trajectory. Next, under the assumption that
increased noise will further degrade the trajectory perfor-
mance, a noise-performance relationship is developed across
the generated trajectories, which is then utilized to learn an
idealized reward function. Following the learning of a re-
ward function, policy learning occurs via RL to generate a
policy that can outperform the demonstrations gathered from
suboptimal end-users.

In this paper, we investigate systematic alternatives to
self-supervised trajectory generation via noise-injection.
Utilizing noise-injection to generate trajectories has two
main drawbacks: 1) Noise injection is only effective if the
noise is applied in vital states among the trajectory ran-
domly. For example, if the robot is idle for the first two
seconds of the demonstration, adding noise during this pe-
riod will have a very small impact compared with adding
noise when the robot is executing a maneuver; 2) Degraded
trajectories via noise-injection have increased randomness
but may not be able to accurately represent the whole scope
of suboptimality. An adversarial/highly sub-optimal policy
may perform much worse than a random policy. For exam-
ple, if the objective is to make a robot cheetah move forward,



the expected performance a random policy could achieve is
to not move. However, a policy moving backward yields
even lower reward, representing an even further degraded
instance in the degradation-performance relationship. We
extend our prior work Self-Supervised Reward Regression
(SSRR) (Chen, Paleja, and Gombolay 2020), to propose
S3RR, Systematic Self-Supervised Reward Regression that
assesses alternative approaches to generate performance-
degraded trajectories. Our proposed trajectory generation
approaches allows S3RR to recover more accurate reward
functions while avoiding the pitfalls of trajectory generation
via noise-injection. We then present empirical results across
two simulated robot control tasks and find S3RR can achieve
higher reward correlation with ground-truth than SSRR.

Preliminaries
In this section, we introduce Markov Decision Processes,
IRL, and SSRR (Chen, Paleja, and Gombolay 2020).

Markov Decision Process – A Markov Decision Pro-
cess (MDP) (White 1993) M is defined as a 6-tuple
〈S,A,R, T, γ, ρ0〉. S and A are the state and action spaces,
respectively: s ∈ S, a ∈ A. R(s, a) defines the reward given
to an agent for executing action, a, in state, s. T (s′|s, a) de-
notes the probability of transitioning from state, s, to state,
s′, when applying action, a. γ ∈ [0, 1] is the temporal dis-
count factor. ρ0(s) is the distribution of initial state. A pol-
icy, π(a|s), defines the probability of the agent taking action,
a, in state, s. The objective for RL is to find the optimal pol-
icy, π∗ = argmaxπ Eτ∼π

[∑T
t=0 γ

tR(st, at)
]
, which max-

imizes cumulative discounted reward in the sampled trajec-
tories, where a trajectory τ = 〈s0, a0, r0, · · · , sT , aT , rT 〉
is a sequence generated by the MDP and the policy:
s0 ∼ ρ0(·), at ∼ π(·|st), st+1 ∼ T (·|st, at), rt ∼
R(st, at), ∀t ≥ 0. We consider the maximum en-
tropy version of RL goal (Ziebart 2010), π∗ =

argmaxπ Eτ∼π[
∑T
t=0 γ

tR(st, at) + αH(π(·|st))], which
adds an entropy bonus (i.e., H(·)) to favor stochastic poli-
cies and encourage exploration during the training process.

Inverse Reinforcement Learning – The goal of IRL is
to take as input an MDP sans reward function and a set of
demonstration trajectories D = {τ1, τ2, · · · , τN} and out-
put a recovered reward function R, which denotes the ob-
jective trajectories in D optimize. Our method is based on
AIRL (Fu, Luo, and Levine 2018), which casts the IRL prob-
lem in a generative-adversarial framework. AIRL consists of
a discriminator in the form of a reward function and a gen-
erator in the form of a learning policy. The discriminator,
D, is given by Dθ(s, a) = efθ(s,a)

efθ(s,a)+π(a|s) , where fθ(s, a)
is the reward function, parameterized by θ, and π(a|s) is a
policy. The discriminator’s objective is to distinguish gen-
erated rollouts from demonstrated trajectories via a binary
cross entropy, updating the reward function parameter θ via
gradient descent. In other words, the reward function learns
to provide higher rewards for the demonstration trajecto-
ries than the generated policy rollouts. The policy, π, is

trained to maximize the pseudo-reward function given by
R̂ = fθ(s, a), resulting in behaviors close to the demonstra-
tions.

SSRR – SSRR learns an idealized reward function from
suboptimal demonstrations, consisting of three phases:
Phase 1) self-supervised data generation, Phase 2) Noise-
Performance characterization, and Phase 3) Reward & Pol-
icy learning. Figure 1 top depicts SSRR.

Phase 1) For self-supervised data generation, SSRR uti-
lizes the initial reward, R̃, and the initial policy, π̃, in-
ferred from utilizing AIRL on the suboptimal demonstra-
tions. SSRR chooses random actions uniformly (named “in-
jecting noise”) to replace the learned policy decision with
probability η (Equation 1) to produce “noisy” policies. The
trajectories, {τ i} ∀i generated via noise-injection, consist of
four elements τ i = 〈ηi, {sit}, {ait}, {r̃it}〉: the noise param-
eter, ηi, a set of states and actions, {sit} and {ait}, and the
corresponding initial reward r̃it = R̃(sit, a

i
t).

τη ∼ πη(a|s) = ηU(a) + (1− η)πAIRL(a|s). (1)

Phase 2) For noise-performance curve fitting, SSRR em-
pirically characterizes the noise-performance curve. Since
SSRR has access to an initial reward estimate for each
trajectory, R̃(τ i) =

∑
t R̃(s

i
t, a

i
t), SSRR regresses a sig-

moid function (see Equation 2) towards the cumulative es-
timated rewards via least squared error minimization. The
sigmoid acts as a low-pass filter on the noise-performance
relationship from AIRL’s initial reward, creating a smooth
noise-performance relationship even in the presence of high-
frequency neural network output.

σ(η) =
c

1 + exp(−k(η − x0))
+ y0. (2)

Phase 3) Leveraging the resultant noise-performance curve,
SSRR regresses a reward function of trajectory states and
actions, as shown in Equation 3. Here, Rθ represents pa-
rameters of our idealized reward function. After obtaining
an accurate reward function, SSRR applies RL to obtain a
policy π∗ that outperforms the suboptimal demonstrations.

LSSRR(θ) = Eτi

(( T∑
t=0

Rθ(s
i
t, a

i
t)

)
− σ(ηi)

)2
 (3)

Method
In this section, we present systematic alternatives to self-
supervised trajectory generation via noise-injection: 1) Re-
duction of demonstrations available to the initial imitation
learning framework, 2) Reduction of model capacity within
the imitation learning framework, and 3) Increase of policy
network weight sparsity during the imitation learning. Rely-
ing on a random approach such as noise-injection to gen-
erate trajectories has two key drawbacks: 1) Performance
degradation could be random depending on whether the
noise is applied to vital states among the trajectory and 2)
Degraded trajectories via noise-injection may not accurately
represent the entire scope of suboptimality.



Figure 1: This figure depicts comparison between SSRR and S3RR algorithm pipeline. (Top) SSRR (Bottom) S3RR.

As discussed in the Preliminaries Section, the SSRR
pipeline has three phases consisting of self-supervised data
generation, noise-performance curve fitting, and reward &
policy learning. In our extension of SSRR, S3RR, Phase
1 is modified to utilize different performance-degradation
methodologies. In this way, instead of learning one ini-
tial policy via AIRL and injecting noise to produce
performance-degraded trajectories, we learn several AIRL
policies, each representing a different level of degradation. A
visualization of the modified Phase 1 procedure (represent-
ing all three proposed performance-degradation methodolo-
gies) of S3RR is shown in Figure 1 bottom. We detail the
three different degradation methodologies below:

Reduction of demonstrations available to AIRL
In our first variant, we alter the number of suboptimal
demos available to AIRL in each level of degradation.
As machine-learning approaches typically benefit from in-
creased numbers of data, a reduction in the amount of avail-
able data should lead to a decrease in performance (Hlyns-
son., Escalante-B., and Wiskott. 2019; Althnian et al. 2021).
As such, we learn several policies, each learning from a
varying number of suboptimal demos. Each policy is then
used to generate performance-degraded trajectories. The
generated degradation dataset is then fed into Phase 2 fol-
lowing the SSRR framework to infer sigmoid parameters to
fit the degradation-performance curve.

Reduction of Model Capacity within AIRL
In our second variant, we alter the model capacity avail-
able to the policy and discriminator networks within AIRL.
More specifically, we modify the network sizes to control the
model capacities. As highly parameterized networks are typ-
ically needed to learn a complete representation of the user’s
behavior, the performance of machine-learning approaches
suffer when the models are under-parameterized (Frankle
and Carbin 2019). As such, we learn several policies, each
varying in the number of parameters for the AIRL net-
works. Each learned policy can then be used to generate
performance-degraded trajectories, which can then be used

in Phase 2 following the SSRR framework to infer sigmoid
parameters to fit the degradation-performance curve.

Increase of Network Weight Sparsity within AIRL
In our third variant, we alter the amount of weight reg-
ularization used during training the AIRL policy to con-
trol weight sparsity. An increase of L1 regularization (by
increasing λ in Equation 4) during training will force the
policy network to be sparse (Ma et al. 2019), resulting in
a lower performing policy. As such, we learn several poli-
cies, each varying in the amount of regularization used dur-
ing AIRL. Each learned policy can then be used to generate
performance-degraded trajectories, which can then be used
in Phase 2 following the original SSRR framework to in-
fer sigmoid parameters to fit the degradation-performance
curve. Equation 4 shows the policy gradient objective with
the added L1 regularization.

φ∗ = argmaxEτ∼πφ [R(τ)− λ||φ||1] (4)

Results
In this section, we show preliminary results with S3RR with
two MuJoCo virtual robotic control tasks (Todorov, Erez,
and Tassa 2012): HalfCheetah-v3 and Ant-v3, which are
common benchmarks in RL and LfD literature. We present
both the correlation with the ground-truth reward (in Ta-
ble 1) and the performance of the learned policies (in Ta-
ble 2). Each model within S3RR is trained by modifying
the respective performance degradation variable. For the
reduction of demonstrations available to AIRL, we utilize
one, three, six, and ten available demos for training the
respective phase 1 policies, with corresponding degrada-
tion level η = [1.0, 0.78, 0.44, 0.0] by mapping [1,3,6,10]
to degradation levels between 1.0 and 0.0. For the reduc-
tion of network size within AIRL, we vary the number
of layers within the AIRL policy and discriminator net-
work to be one, two, three, four, five for training the re-
spective phase 1 policies with corresponding degradation
level η = [1.0, 0.75, 0.5, 0.25, 0.0]. We keep the number
of hidden nodes per layer fixed and choose four nodes for
HalfCheetah and eight nodes for Ant on each layer. For the



Table 1: Learned Reward Correlation Coefficients with Ground-Truth Reward Comparison between S3RR variants and SSRR.
Reported results are Mean ± Std. Dev. across five trials. Bold results represent the largest correlation within each domain.

Domain S3RR S3RR S3RR SSRR SSRR
Reduction of Demos Model Capacity Weight Sparsity Noisy-AIRL AIRL

HalfCheetah-v3 0.936 ± 0.048 0.977 ± 0.014 0.996 ± 0.001 0.941 ± 0.025 0.917 ± 0.017
Ant-v3 0.941 ± 0.021 0.816 ± 0.109 0.741 ± 0.081 0.970 ± 0.006 0.615 ± 0.024

Table 2: Ground-Truth Reward of Policy Inferred via S3RR and SSRR. Best correlation reward functions are chosen to optimize
via RL out of the trials of S3RR and SSRR. Bold results represent the highest performing policies in each domain.

Domain Demonstration S3RR S3RR S3RR SSRR
Average Best Reduction of Demos Model Capacity Weight Sparsity Noisy-AIRL

HalfCheetah-v3 803.38 1246.22 572.82 (46%) 4968.29 (398.67%) 8021.58 (644%) 2853 (229%)
Ant-v3 1297.59 1559.44 955.94 (61%) 943.91 (61%) 951.52 (61%) 3944 (253%)

Figure 2: Reward correlation with Ground-Truth reward in
HalfCheetah. Red dots represent demonstrations given to
AIRL, blue dots represent synthetic degradation data, green
dots are unseen “test” trajectories, and the dotted line re-
flects perfect correlation. S3RR returns are normalized to the
range of ground-truth returns.

increase of network regularization within AIRL, we utilize
L1 regularization coefficients of 100, 10, 1, .1, .01 in train-
ing the respective phase 1 policies, with the corresponding
degradation level η = [1.0, 0.75, 0.5, 0.25, 0.0].

In Table 1, we present the learned reward correlation
coefficients with the ground-truth reward across the pro-
posed S3RR variants and prior work, SSRR. Specifically, we
benchmark against two variants of SSRR, namely SSRR-
AIRL and SSRR-Noisy-AIRL, depicting different initial
AIRL training methods (See Chen, Paleja, and Gombolay
(2020) for a detailed comparison between AIRL and Noisy-
AIRL). As a comparison, SSRR has 21 noise levels equally
spaced between 0 and 1. Across two robotic control do-
mains, HalfCheetah and Ant, we see three variants of S3RR
achieve higher correlation compared with SSRR-AIRL, il-
lustrating the benefit of systematic self-supervised trajec-
tory generation. Comparing with the previous state-of-the-
art SSRR-Noisy-AIRL, S3RR achieves better correlation on
HalfCheetah and comparable performance on Ant. We hy-
pothesize S3RR could benefit from the Noisy-AIRL intu-
ition by combining the critic training across AIRL runs with
different degradation parameters, which creates a more ro-

bust discriminator that can generalize to various state spaces
generated by different performing policies. S3RR could also
benefit from a recent work on end-to-end SSRR (Cui et al.
2021). We leave the exploration for future work. We present
a depiction of the correlation between S3RR and the ground-
truth reward function in HalfCheetah in Figure 2. In general,
we argue there is likely no one degradation method that fits
well (Wolpert and Macready 1997), let alone the best, to the
data in every domain, as observed in our results. As shown in
Table 1, S3RR Weight Sparsity works the best for HalfChee-
tah, but is the worst for Ant. We find AIRL policy performs
well with regularization coefficients of 1 or 100, while with
regularization coefficient of 10, the AIRL policy acts ran-
domly. To that end, our paper proposes a general modifica-
tion to SSRR that opens the possibility to discover effective
degradation processes for broader domains to achieve learn-
ing from suboptimal demonstration, despite higher compu-
tation needs linear to the number of degradation levels.

In Table 2, we present the performance of the policies
learned via S3RR and SSRR. The success of reward learning
in S3RR with weight sparsity in HalfCheetah is transferred
to the policy, yielding a policy performing 544% better than
the best demonstration and 415% better than SSRR-Noisy-
AIRL. Besides, S3RR with model capacity also achieves
better performance than SSRR-Noisy-AIRL. However, pol-
icy learning with S3RR on Ant fails drastically, possibly due
to the lower reward correlation compared with SSRR-Noisy-
AIRL. In future work, We will conduct further analysis to
find the cause of the low policy performance.

Conclusion
In this work, we present Systematic Self-Supervised Reward
Regression, S3RR, to investigate systematic alternatives for
trajectory degradation. As alternatives in data generation in
imitation learning, we explore 1) a reduction of demonstra-
tions available, 2) a reduction of model learner capacity, and
3) an increase of network weight sparsity. We find that S3RR
can achieve higher reward correlation with ground-truth and
produce policies performing 544% better than the best sub-
optimal demonstration and 415% better than the previous
state-of-the-art SSRR-Noisy-AIRL.
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