
The Effect of Robot Skill Level and Communication in Rapid,
Proximate Human-Robot Collaboration

Kin Man Lee∗
klee863@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Arjun Krishna∗
akrishna49@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Zulfiqar Zaidi
zzaidi8@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Rohan Paleja
rpaleja3@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Letian Chen
letian.chen@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Erin Hedlund-Botti
erin.botti@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Mariah Schrum
mschrum3@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Matthew Gombolay
matthew.gombolay@cc.gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

ABSTRACT
As high-speed, agile robots become more commonplace, these
robots will have the potential to better aid and collaborate with
humans. However, due to the increased agility and functionality
of these robots, close collaboration with humans can create safety
concerns that alter team dynamics and degrade task performance.
In this work, we aim to enable the deployment of safe and trustwor-
thy agile robots that operate in proximity with humans. We do so
by 1) Proposing a novel human-robot doubles table tennis scenario
to serve as a testbed for studying agile, proximate human-robot
collaboration and 2) Conducting a user-study to understand how
attributes of the robot (e.g., robot competency or capacity to com-
municate) impact team dynamics, perceived safety, and perceived
trust, and how these latent factors affect human-robot collaboration
(HRC) performance. We find that robot competency significantly
increases perceived trust (𝑝 < .001), extending skill-to-trust as-
sessments in prior studies to agile, proximate HRC. Furthermore,
interestingly, we find that when the robot vocalizes its intention to
perform a task, it results in a significant decrease in team perfor-
mance (𝑝 = .037) and perceived safety of the system (𝑝 = .009).

CCS CONCEPTS
• Human-centered computing → Empirical studies in collab-
orative and social computing; • Computer systems organiza-
tion → Robotics.
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1 INTRODUCTION
The deployment of collaborative robots (i.e, “cobots") holds the
promise of increasing productivity and enhancing safety. These
robots are expected to collaborate in proximity with humanworkers
as opposed to the caged robots typically encountered within today’s
manufacturing industry [67]. This paradigm shift allows for cobots
to work with human workers in new ways, such as mixed-initiative
teaming [29, 35, 47], to increase productivity. In mixed-initiative
settings, human workers and robots are co-located in a shared
workspace and must dynamically decide who should accomplish
shared tasks. This online reasoning in human-robot collaboration
provides a more natural and fluent interaction scheme than a strict,
pre-planned allocation of work [2].

However, achieving fluency in mixed-initiative teaming is chal-
lenging as identifying precisely who should accomplish a specific
task is computationally challenging for human and robot alike [55],
and inferring human intent online from dynamic motion remains an
open research problem requiring domain expertise for algorithm de-
sign [54]. Enabling robots to convey intent is likewise an unsolved
design problem [23, 50]. Furthermore, as robots gain functionality
and increased agility, close collaboration can create safety concerns
that may alter the team dynamic, affecting human behavior and
performance due to latent variables, such as perceived safety and
trust [43, 44]. In this work, we are interested in understanding how
attributes of the robot (e.g., skill-level or capacity to communicate)
impact team dynamics, perceived safety, and perceived trust, and
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how these latent factors affect human-robot collaboration (HRC)
performance. Insight into these relationships will inform how to
best design robots that work in proximity to humans.

We are specifically interested in the development of agile ro-
botics for human-robot collaboration. Agile robots are those that
are, by definition, capable of demonstrating agile behaviors in dy-
namic settings [21, 70]. These robots are designed to closely emulate
human-level abilities across tasks such as sports [8, 70], cooking
[27, 38, 64], and mobile manipulation [41, 51]. Agile robotics holds
the promise of low-latency decision-making and high-speed robot
maneuvers. Collaboration in proximity to humans presents a novel
challenge for agile robotics, as we would like to take advantage of
high-speed manipulation for effective human-robot collaboration.

Fast moving collaborative robots in proximity to humans could
potentially induce fear, anxiety, and stress because the robot’s in-
tention may be unclear, the behaviors exhibited by the robot could
be unpredictable, and the risk of the human coming to harm is ob-
jectively higher [3, 6, 48, 58]. Additionally, humans have less time
to react, exacerbating the concerns of safety and trust [3, 11, 60, 63].

In this work, we choose the domain of table-tennis doubles for
our human-subjects experiment in order to gain insights into the
design of agile, collaborative robots. Here, we do not follow the
typical table-tennis doubles rule, where agents must alternate hit-
ting the ball; instead, we frame our domain as a mixed-initiative
human-robot teaming task (i.e., either player can return the ball).
Our modified game introduces the opportunity for players to reason
about who should hit the ball, whether and how to communicate
intent, and a possible physical collision if the human and robot are
not in sync. Our task meets the following criterion: (1) Low-reaction
time decisions from humans and robots, and (2) Shared collabora-
tion space where either agent can successfully accomplish the task.
In this environment, we evaluate how an agile robot, varying in
skill level and endowed with a deliberative voice-communication
channel is able to team with human end-users. We place specific
emphasis on understanding how the robot’s competence, voice
profile, and the capacity to communicate affect perceived safety,
and trust in agile, proximate human-robot collaboration. We note
that we include as an independent variable the sex of the voice (i.e.,
male vs. female) due to (conflicting) prior work in human factors on
sex-binary voices for cockpit automation indicating that the sound
of female vs. male voice can have differing impacts on audibility,
perceived assertiveness, and reaction time and quality [4, 24].

While we study these factors in an ad hoc table-tennis doubles
task, the outcomes of this study are potentially applicable to settings
where humans and agile-robots have to work together in a shared
space. Applications include collaborative manufacturing robots,
assistive home robots, athletic robots for sports and recreation,
etc. Our work is the first to explore these factors in an athletic
collaborative human-robot task and we hope this work inspires
more research to enable the deployment of safe and trustworthy
agile robots that operate in proximity with humans. We summarize
our key contributions as follows:

(1) We develop a novel table tennis system for safe and dynamic
HRC by extending probabilistic movement primitives [30]
for motor control and incorporating a safety subsystem that
uses unintrusive, camera-based human pose tracking.

Figure 1: Setup of the collaborative table-tennis robot system.

(2) We conduct a user study and find that fast, verbal communi-
cation to convey intent reduces overall team performance
(𝑝 = .037) and perceived safety of the robot (𝑝 = .009).

(3) We find that participants rarely utilized verbal signals to
convey intent to the robot. Based on a small sample size of
user feedback, this suggests that most felt more comfortable
communicating to the robot implicitly with body motion in
high-speed teaming tasks.

2 RELATEDWORK
Proximity in HRC – Cobots are envisioned to be in “cage-free" en-
vironments, sharing a workspace and collaborating closely with hu-
manworkers [25]. As these cage-free systems can prove detrimental
due to the potential for collision, several works have attempted
to create safe human-robot collaboration via algorithmic advance-
ments [39, 45, 52], designing different manipulation techniques to
stop the robot from causing bodily harm in alignment with industry
guidelines [57]. Another approach has been to design compliant
robots to ensure safety in proximate HRC settings [32, 59, 73]. Other
work has looked into human-in-the-loop approaches that attempt
to understand human intent for safe, proximate human-robot col-
laboration [28]. However, while such techniques can produce safe
behavior and address planning within a mixed-initiative teaming
paradigm, these approaches do not address the perceived safety or
trust of end-users, which are important factors in achieving high-
performance HRC [9]. Works in human factors have attempted to
measure perceived safety through physiological signals that can in-
dicate stress, fear, or anxiety [18, 53, 69]. Some of this work has been
applied to industrial manipulators [3, 40], though none have been
applied in a fast-paced HRC setting to the best of our knowledge.
Communication in HRC – Prior work displayed that verbal com-
munication in HRC affects collaboration as well as users’ perception
of the robot [31, 46, 66]. Studies have shown that verbal communica-
tion between the robot and the user improves subjective and objec-
tive metrics on team performance and users prefer a speaking robot
over a non-speaking one [42, 49, 61, 62]. Furthermore, [19] found
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Figure 2: Top-down view of the task setup. Balls land in three zones: Robot (Zone R), Shared (Zone S), and Human (Zone H).
The scoreboard on the right is updated in real-time.

that autonomous agents who exchanged information regarding
their intention (i.e., deliberative communication [10]) collaborated
with humans better than those sharing information in regard to the
world state. It has also been suggested that a lack of truthfulness in
a robot’s statement can negatively affect a human’s evaluation of a
robot’s abilities [49]. Although these studies produced interesting
findings about robot communication, the corresponding tasks did
not have time pressure, deviating from real-time decision-making.

In our experiment, the robot asserts its intention via a short
verbal statement in a male/female voice to inform the participant
that it will attempt to hit an incoming table tennis ball. The verbal
communication is done in real-time by an agile robot conducting a
high-speed striking maneuver. Deviating from prior literature, we
additionally allow the human to communicate intent with the robot
(bidirectional communication), creating a realistic, rapid, proximate
HRC scenario where the human must reason about received com-
munication, whether to communicate intent, which agent should
hit the ball, and the ball trajectory, all within a short duration.
Agile Robot Manipulation – Agile robotic systems that work
alongside human beings is a long-standing goal in manufacturing,
where high-speed robotic maneuvers are safely conducted with
humans collaborating in proximity with the robot. In this way,
manufacturing is able to take advantage of a human’s ability to deal
with uncertainty and variability while utilizing automation to its
fullest [25]. However, prior work has noted that stress, anxiety, and
fear levels of a human user around a fast-moving robot with the
capability of causing physical harm are high [3, 6, 11, 48, 58, 60, 63],
presenting interesting challenges in producing high-performance
HRC. Furthermore, as producing high-speed robotic maneuvers
is a difficult challenge in itself, poor performance of the robot
can adversely affect user trust [20, 33, 56, 71]. As such, to address
these open problems in studying agile cobots, we study both the
effects of varying skill level and communication on collaboration
performance between humans and agile robot.

We utilize table tennis as a testbed for HRC, as this is a sport
requiring fast reflexes and decision-making [13]. In prior work,
robotic systems have been developed to play singles table tennis [8,
14–16, 30]. However, to the best of our knowledge, systems for
doubles table tennis have not been explored.

3 METHODOLOGY
3.1 Task Description
The participant’s task is to team-up with a 7 degree-of-freedom
Barrett WAM arm to return table tennis balls launched from a
Butterfly Amicus ball launcher, as shown in Figures 1 and 2. To
investigate the collaborative behavior between the human and the
robot, we program the launcher to project balls to three regions:
Zone R (the robot zone), Zone S (the shared zone), and Zone H (the
human zone). The robot has the capability to return balls landing in
Zone R and Zone S, and does not attempt to return the balls landing
in Zone H. The human is free to return balls in any region, but
those in Zone R are more difficult as those balls are farther from
the subject’s starting position (displayed in Figures 1 and 2).

The task of returning the balls in Zone S is designed to be a
shared task to evaluate the collaboration between the human and
the robot. In this region, both agents (robot and participant) can
comfortably attempt the task. Note, we modify the standard doubles
table tennis rules for our experiment such that the two players (i.e.,
the participant and the robot) do not have to alternate, and the
human can decide which balls to attempt. The participants must
start in the “subject home position” (shown as shaded region in
Figures 1 and 2) before the ball is launched to ensure consistent
starting configuration and difficulty to reach Zone R.

The setup describedmeets the two criteriawe set: 1) Low-reaction
time in which the human has ≈ 0.6 seconds to make a decision
on whether to attempt to return a ball or yield it to the robot. 2)
Shared Human-Robot Collaboration space following the definition
of mixed-initiative teaming, where the interaction strategy is flexi-
ble, dynamic, and based on agents contributing to the task that they
can do best [1]. In our scenario, the subject is incentivized to rely on
the robot for balls in Zone R due to the physical distance and share
the Zone S with the robot. The participant score is displayed on a
real-time scoreboard (Figure 2); further details are in Section 3.5.

3.2 Experiment Design
In our study, we seek to explore the impact and interplay of voice
communication and robot skill level on team performance, hu-
man perceived safety, and human trust towards the robot. As such,
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within our collaborative task detailed in Section 3.1, we design a
study with three factors: (1) Communication: enabled or disabled,
(2) Robot Voice Sex: male or female, (3) Robot Skill: low and high.
We propose a mixed-factorial study with a 2x2x2 design, with Com-
munication and Robot Skill as within-subject factors and Robot
Voice Sex as a between-subjects factor. While a complete within-
subjects design is ideal for exposing participants to all conditions,
we chose to investigate robot voice sex as a between-subjects factor
to prevent participants from being aware that we are investigating
sex/gender bias. We detail the three independent variables below.

Communication: Drawing inspiration from how volleyball play-
ers communicate deliberative intent, we enable the robot to vocally
communicate assertive audio signals such as "Mine" or "Got it"
through a speaker mounted on the robot arm. The utilization of
short phrases is a requirement in agile robotics as intent must be
quickly conveyed due to the low-duration task. We define these Vo-
cal, Assertive, INtention communication signals as “VAIN" signals
for clarity and brevity on the form of communication used in our
study. VAIN signals are provided in real-time as soon as a launched
ball is detected by the vision system to indicate that the robot will
attempt to return the ball. VAIN communication, when enabled, is
used for all balls landing in both Zone R and Zone S.

Robot Voice Sex: We use a voice generation tool to create audio
files for the phrases used in the communication factor with both
a male and female tone to study whether/how the communica-
tion voice impacts the human-robot team’s performance and the
human’s subjective perception of trust and safety. As noted, prior
work has suggested that the sound of female vs. male voice can have
differing impacts on audibility, perceived assertiveness, reaction
time, and quality [4, 24].

Robot Skill: We have two levels of robot performance - low and
high. The high performance model is comprised of a well-tuned
stroke primitive (detailed in Section 3.3.2) to return balls. The low
performance model replaces the well-tuned primitive with a sub-
optimal primitive (∼ 50% of the time), which either misses the ball
or does not successfully return the ball over the net. The success
rates of the robot policies are summarized in Table 1.

Prior work has shown that robot skill has a positive correlation
with trust on the robot [20, 33, 56, 71]. However, most findings
have come from cognitive or physical tasks in virtual environments.
Additionally, the impact of a robot’s skill on perceived safety in
HRC is under-explored. Exploring these topics in a setting with a
physical, agile robot on a fast-paced task will lead to insights that
can help in designing more effective cobots.

Below, we detail our research questions under the following
themes: Robot Skill and Deliberative Communication.

3.2.1 Robot Skill. As skill is a critical factor in establishing effec-
tive collaboration, we are interested in answering the following
questions pertaining to this factor through our study:

(RQ1) How does the robot’s skill level impact team performance?
(RQ2) How does the robot’s skill level impact the perceived safety

of human collaborators?
(RQ3) How does the robot’s skill level impact human collaborators’

trust on the robot?

(RQ4) How does the robot’s skill level impact human initiative in
shared regions of the task?

3.2.2 VAIN Communication. We are interested in evaluating how
Vocal, Assertive, INtention (VAIN) communication (i.e., a transpar-
ent robot that always announces its intention) during robotic table
tennis motions affect the dynamics of human-robot collaboration.
To this end we ask the following questions:

(RQ5) Does VAIN communication help increase HRC team perfor-
mance?

(RQ6) Does VAIN communication increase perceived safety of the
robot in HRC?

(RQ7) Does communication increase people’s trust on the robot in
HRC?

(RQ8) Does the sex of the robot’s voice impact the perceived safety
and trust of the robot?

(RQ9) Does VAIN communication increase the robot’s chance of
taking initiative within the shared regions of task?

Stroke Type Skill Level Hit Rate Success Rate
Zone R high 94.36% 86.40%
Zone R low 93.66% 59.86%
Zone S high 86.54% 64.63%
Zone S low 83.89% 30.29%

Table 1: Performance of robot strokes on balls that land in
Zone R and Zone S for the different skill levels. “Hit” denotes
the robot successfully hit the ball with the paddle, and “Suc-
cess” represents the ball is successfully returned over the net.

3.3 System Design
Our robotic system has four main components to achieve various
levels of robot skills and ensure safety, as shown in Figure 3. First,
Ball Detection enables the robotic system to “see” and predict the
ball trajectory in order to decide when to hit. Second, if the robot
is able to strike the incoming ball (i.e., the ball must be in Zone
R or Zone S), the Ball Strike Controller utilizes ProMP [30] poli-
cies to execute the corresponding pre-trained strikes for the zone.
Third, Human Pose Estimation detects the 3D pose of the human.
Lastly, Safe Execution determines if any human pose keypoints
have entered the robot safety region, which leads to an immediate
termination of the robot trajectory to avoid any possible collision
between the robot and the human.

3.3.1 Ball Tracking. To accurately detect the table tennis balls, we
utilize a multi-camera vision system consisting of three Stereolabs
ZED2 cameras. Classical computer vision techniques, including
background subtraction and color thresholding (from OpenCV [7]),
are applied to identify the ball pixels within the image. With this,
an estimate of the ball position in the world frame is calculated
based on each camera’s relative position to an AprilTag [68] on the
ping pong table. All three ball poses are merged by an Extended
Kalman Filter (EKF) [36, 37] to produce an accurate fused estimate
of the ball. A dynamics model that factors in drag, gravity, and
the coefficient of restitution of bounce is used to rollout the EKF’s
expected future ball trajectory, which is then utilized by the Ball
Strike Controller to determine the right time to execute a stroke.
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Figure 3: Overview of our collaborative table-tennis robot system.

(a) Zone R stroke (b) Zone S stroke

Figure 4: A visualization of the two robot
stroke primitives that hits the balls that
land in Zone R and Zone S.

3.3.2 Ball Strike Controller. We trained two probabilistic move-
ment primitives (ProMPs) [30] – one for Zone R and Zone S – using
ten kinesthetic demonstrations of successful returns for each. We
model the joint position trajectories of the stroke as a weighted ac-
tivation over 50 radial basis functions in the phase space [0, 1] and
learn the weight distribution that maximizes the likelihood of the
demonstrated trajectories through the Expectation-Maximization
(EM) procedure outlined in Gomez-Gonzalez et al. [30]. The trained
stroke primitives are visualized in Figure 4. While the learned prim-
itive weights can be conditioned to pass through waypoints based
on the ball trajectories, we execute the unconditioned mean of
the learned primitive due to the possible unsafe waypoints of a
conditioned ProMP. Doing so effectively ensures that the stroke
performed by the robot for each zone is pre-determined, thereby
keeping the robot’s behavior predictable and safe for the purposes
of the study.

During our experimentation, the sequence of ball launch loca-
tions is predetermined, providing the robot with access to informa-
tion about which region each ball will land. To avoid the participant
from obtaining information about incoming ball trajectories, for
each strike, the robot starts at a common reset pose and moves to
the initial pose of the primitive only once a ball is detected by the
Ball Tracking component. The common reset pose was determined
to be a weighted average of the initial poses of the Zone R and Zone
S strokes. Once a ball is detected, the system utilizes the anticipated
ball trajectory to calculate the time of impact and the approximate
paddle position at the time of impact, which is used to trigger an
agile robot table tennis return.

The stroke parameters, such as duration and hit phasewere tuned
to return as many balls in each zone as possible. These strokes serve
as the high skill model of the robot. In order to create a low skill
model of the robot, we introduce mistiming to the strokes 50% of the
time. This offsetting during the hit phase causes the robot to poorly
return the ball or completely miss. We report the performance of
the robot using these two skill models over all the ball sequences
considered in the experiment trial in Table 1.

3.3.3 Human Pose Estimation. We utilize a ZED2 camera for track-
ing human pose. The ZED software development kit provides access

to a body tracking module that outputs skeleton-based human key-
points. These keypoints indicate the locations of major joints within
the human body such as the head, shoulders, elbows, hands, knees,
and feet. We use the 18-point 3D pose format (OpenPose [12] pose
format) in our system to track the pose of participants. Each 3D
keypoint consists of an X, Y, and Z position of a human joint in the
camera frame. These keypoints are then transformed to world co-
ordinates relative to an AprilTag [68] on the table, which is used in
the safe execution module to avoid the robot colliding with humans.

3.3.4 Safe Execution. All control requests to the robot are routed
through the safe execution module as shown in Figure 3. A fixed 3D
unsafe region is created around the robot based on the reachability
range of the robot strokes calculated by the Ball Strike Controller.
The skeleton keypoints from the Human Pose Estimation module
are passed as input into the safe execution module to detect if any
part of the participant’s body enters the unsafe region. If so, any
robot motion in progress is immediately terminated by sending a
stop command directly to the low-level controller and all further
control requests are rejected. Once keypoints are no longer detected
within the unsafe region (i.e., the human is outside of the robot
striking area), control requests are accepted again and the robot
is reset to its default joint positions. Additionally, the maximum
end-effector speed of any stroke is limited to 3.5 m/s to ensure
safety even if the unlikely scenario of a collision were to occur.

3.4 Metrics
3.4.1 Objective Metrics. The team performance metric is the sum
of successful returns both the robot and participant achieve together
in a randomized sequence of 30 balls. This randomized sequence
consists of 8 balls in Zone H, 14 in Zone S, and 8 in Zone R. In order
to control the impact of the participants’ prior table tennis skill to
the overall performance score, we measure the participant’s skill
level in performing the described task in a calibration phase where
the participant returns a sequence of 30 balls on their own. We
record for each ball, the zone in which it landed, whether it was
hit, and if the ball was returned successfully. Similarly, in the main
experiment, we record for each ball the landing zone, who attempted
to hit it, whether it was hit, and if the return was successful.
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As an additional dependent variable, we create a bidirectional
communication channel by allowing the subject to speak the phrases
(“Mine", “Got it") to convey their intent of returning the ball. Here,
we observe if robot skill level or robot communication incentivized
the human to communicate their intent. Note we explicitly state
that participant communication towards the robot is optional and
not required for the robot to stop its stroke. The robot always yields
given participant communication, responding with either "Okay" or
"Alright". Due to the latency of speech recognition and the limited
timing allowed in our task, we choose a Wizard-of-Oz approach
[17] to provide a timely response to the participant’s declaration of
intent - a button is pressed by the experimenter to trigger immediate
stopping of the robot movement and provide voice responses.

3.4.2 Surveys. We conduct a pre-experiment questionnaire that in-
cludes self-reported demographics - age, gender, and dominant hand
in playing table-tennis, mini-IPIP[22] to measure the big-five per-
sonality factors, and negative attitude towards robots (NARS)[65]
to measure the subject’s predisposition towards robot interactions.
Each of these serve as potential confounds within our analysis. Af-
ter each within-subject condition (described in depth within Section
3.5), the subject is asked to fill out a questionnaire assessing their in-
teraction with the robot. This questionnaire includes the Godspeed
questionnaire [5], measuring anthropomorphism, likeability, per-
ceived intelligence, and perceived safety, and includes the trust in
automated systems questionnaire [34] to measure perceived trust.

3.5 Study Procedure
To assign participants across all conditions uniformly, we sample
sequences in blocks of four samples with an even split of robot voice
sex in a pseudo-random fashion. The sequence order of conditions
is fully randomized. The same seed is used for consecutive blocks of
samples where the last 11 samples are manually assigned to ensure
the gender of participants are balanced across robot voice sex.

For each participant, we start by obtaining informed consent. In
the consent form, we note that our experiment may have decep-
tion approved by our IRB protocol. This hidden deception helps
incentivize participants to be more involved and competitive in the
task by deducting 10 cents from the study compensation for each
ball missed irrespective of whether it was the human or the robot.
We further utilize a digital scoreboard showing the current score
alongside the loss in compensation in the current experiment block
(Figure 2) to emphasize the importance of human-robot collabora-
tion. Note, participants were debriefed about the deception at the
end of our study and were paid the full amount of compensation.

Upon completion of informed consent, we give the participant a
pre-experiment survey to assess self-reported demographics, per-
sonality factors, and negative attitude towards robots. Once par-
ticipants have completed the survey, we perform skill calibration
for a sequence of 30 balls to access the subject’s performance on
the task without the robot. The subject is allowed a two-minute
warm up period before the calibration task begins. After the cali-
bration phase, we move into the main study. We begin by providing
a description of the collaborative study and show a demonstration
over a sequence of 6 balls with the high-skill model of the robot.
The demonstration provides the participant with an idea of the
robot capability and show that it is safe to step into the robot’s

configuration space to intercept a ball. We additionally demonstrate
the high-skill model of the robot with communication enabled and
show how both the robot and human can declare intent, and we in-
form the participant that communicating with the robot is optional.
The participant is allowed a warm-up phase, actively collaborating
with the robot under no communication. This allows the participant
to get used to the robot’s presence and minimize the learning effect
in the first sequence. During this warm-up, the ball sequence order
is fixed and evenly distributed across all zones.

For each condition of the 2x2 within-subject block design, we
describe whether the robot has communication enabled and stress
that the performance is independent of previous trials. Information
about robot performance is kept secret from the participant. Each
participant will experience a total of four trials varying across Robot
Skill and Communication. The human-robot team will play a 30
ball sequence for each condition, after which the subject is asked
to evaluate the interaction with the Godspeed [5] and Trust in
Automated Systems questionnaires [34]. Upon completion of the
four trials, we debrief the subject about the experiment, detail the
deception/concealment, and obtain consent to use their data.

4 RESULTS
We recruited 46 participants for this in-person IRB-approved study.
Each participant was compensated $20 for completing our study.
Four participants were excluded from our analysis as we experi-
enced issues with the cable tension of the robot arm, resulting in
visibly degraded robot performance during the experiments. In our
results, we report on 42 participants (sex: 20 Male, 20 Female, 2
Prefer not to say) and age (𝑀 = 25.43, 𝑆𝐷 = 3.5).

For each measure of trust, perceived safety, team performance,
and anthropomorphism, we create a mixed-effects multiple regres-
sion model with metrics of interest as the dependent variable. The
independent variables are skill, communication, and robot-voice,
and we include covariates such as gender, age, personality factors,
calibration score, etc. We then applied an Analysis of Variance
(ANOVA) on each model to answer our research questions. The
mixed-effects model accounts for the repeated measures nature of
each subject completing the 2x2 within-subject blocks. For each
model, we report the transforms used, results from the Shapiro-Wilk
test for normality, and the Levene’s test for homoscedasticity for the
independent variables in the Appendix. We measure significance as
𝛼 < 0.05. If the assumptions for normality or schedasticity do not
hold, we report a non-parametric assessment using Friedman’s test
followed by an all-pairs Nemenyi test comparing the within-subject
factors of robot-skill and communication, and do not consider the
influence of other covariates.

4.1 Perceived Trust
Across all conditions of gendered voice, skill, and VAIN communica-
tion, we compared how participants rated their levels of trust after
completing each block comprising a sequence of 30 balls. We find
that when the robot performed poorly, the trust in the robot reduced
significantly (𝐹 (1, 124) = 18.687, 𝑝 < .001), as shown in Figure 5a.
This finding concurs with many previous human-robot interaction
studies evaluating trust on the robot with varying skill levels [33]
and addresses (RQ3). However, we find that VAIN communication
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(a) Effect of Robot Skill on the perceived
trust of the system.

(b) Impact of VAIN Communication on
the perceived safety of the system.

(c) Effect of robot voice sex on the perceived
safety of the system.

Figure 5: Effect of robot skill, VAIN communication and robot voice on the perceived trust and safety.

did not impact the level of trust on the robot (𝐹 (1, 124) = 0.463,
𝑝 = .497), concluding for (RQ7) that communication does not
improve trust on the robot.

4.2 Perceived Safety
To investigate (RQ6), we analyze the relationship between VAIN
communication and perceived safety. We observe that this commu-
nication significantly decreased perceived safety (𝐹 (1, 124) = 7.070,
𝑝 = .009), as shown in Figure 5b. We hypothesize that the constant
announcement of the robot’s intention induces more anxiety and ag-
itation, which leads to lower scores within the perceived safety sub-
scale. Additionally, we observe that the sex of the robot voice was
a significant factor affecting participants’ perception of the robot.
On average, the robot equipped with a female voice was perceived
safer than the robot with a male voice (𝐹 (1, 38) = 7.079, 𝑝 = .011),
as shown in Figure 5c, addressing (RQ8). The participant’s gender
also influences the perceived safety score, with male participants
rating the robot as safer than female participants (𝐹 (2, 38) = 4.709,
𝑝 = .015). In addressing (RQ2), we find that the robot skill level is
marginally significant for perceived safety, with robot with higher
skill level perceived to be safer (𝐹 (1, 124) = 2.762, 𝑝 = .099).

4.3 Team Performance
For (RQ1), we find that a higher skill level of the robot significantly
improves the team performance (𝐹 (1, 123) = 69.25, 𝑝 < .001). Ad-
ditionally, the skill of the human, measured by their score on the
calibration task, improved team performance (𝐹 (1, 34) = 29.929,
𝑝 < .001). The gender of the participant also significantly impacts
team performance, with male participants having higher team per-
formance on the task (𝐹 (2, 34) = 6.314, 𝑝 = 0.005). In addressing
(RQ5), we find that VAIN communication degrades HRC team-
performance (𝐹 (1, 123) = 4.514, 𝑝 = .037). We find an interac-
tion effect between communication and skill also being significant
(𝐹 (1, 123) = 4.0266, 𝑝 = 0.047), indicating that communication
significantly hurts team-performance when the robot’s skill is low,
and affects team performance minimally when robot skill is high,
as visualized in Figure 6a.

To answer (RQ4) and (RQ9), we perform a non-parametric all
pairs Nemenyi test, as some independent variables failed the Lev-
ene’s test. The Friedman’s test reported that the condition: skill +
communication significantly impacts the number of shared tasks

(a) Average team score out of the
30 possible points.

(b) Percentage of shared tasks
yielded to the robot on average.

Figure 6: Effect of robot skill and VAIN communication on
the team performance.

attempted by the robot. This metric indicates that the participant
yielded these tasks to the robot (𝜒2 (3) = 18.071, 𝑝 < .001). Com-
paring the different conditions with an all pairs Nemenyi test, we
find that when the communication is disabled, robot with higher
skill was given more chances to play the shared task (𝑝 = .034). For
(RQ9) we find that communication improves the robot’s odds of
playing the shared task, as depicted in Figure 6b, but the difference
is not statistically significant.

Our setup additionally allowed the participant to declare their
intent to the robot verbally, similar to what the robot does in the
VAIN communication condition. Participants rarely made use of
this channel to declare their intent, with a median of 3 declarations
in a sequence of 30 balls, with 45.2% of the participants not even
using the channel. We note that this metric did not correlate with
other factors such as calibration score, personality factors, etc.

4.4 Anthropomorphism
We observe that the robot with high skill was rated higher in terms
of anthropomorphism (𝐹 (1, 120) = 4.762, 𝑝 = .031). We hypothesize
this is due to the fluid nature and legible behavior of successful
strokes compared to the jerky movement exhibited when the robot
fails to return balls. Furthermore, we find VAIN communication was
marginally significant in impacting perceived anthropomorphism
(𝐹 (1, 120) = 3.047, 𝑝 = .083). A participant’s conscientiousness
score (i.e., their propensity towards organization and attention to
detail) positively impacted how much they anthropomorphized
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the robot (𝐹 (1, 35) = 9.257, 𝑝 = .004). Conversely, a participant’s
rating on the NARS subscale negatively influenced the participants
perception of anthropomorphism (𝐹 (1, 35) = 7.084, 𝑝 = .012). We
also see that participants that are detail-oriented found the robot
more anthropomorphic, while participants that are worried about
robots having emotions found the robot less anthropomorphic.

When communication is enabled, the male/female voice of the
robot influences the perception of anthropomorphism. The robot
using a female voice is rated as more anthropomorphic than the
robot with the male voice (𝐹 (1, 120) = 4.762, 𝑝 = .031). The gender
of the participant and its interaction with the robot voice were not
significant for anthropomorphism.

4.5 Likeability
We analyze the impact of the skill and the communication factor on
this dependent variable through non-parametric tests as this vari-
able failed to meet the assumption of normality. The Friedman’s test
indicated that the condition: skill+communication significantly im-
pacts likeability (𝜒2 (3) = 21.171, 𝑝 < .001). To further compare the
different conditions, we perform an all-pairs Nemenyi test and find
that when communication is disabled, higher robot skill increases
likeability (𝑝 = .043), and with low robot skill, communication
tends towards significance in improving likeability (𝑝 = .075).

5 DISCUSSION
Existing work has shown that verbal communication increases
team performance, and that users prefer robots with vocal capa-
bilities. Further, it has been shown that cues which signal specific
robot motions (e.g., emitting a sound for a particular motion or
non-verbal cues, such as eye contact, for handover tasks) improve
perceived safety [3]. However, our results show that in a dynamic,
mixed-initiative setting with proximate collaboration, VAIN com-
munication negatively affects team performance and perceived
safety. We hypothesize that VAIN communication overloads the
subject’s mental resources given the short timeframe (∼ 0.6 sec-
onds) for task execution [26]. Within this time, participants must
reason about the ball trajectory to determine who should return
the ball, process received communication, and optionally commu-
nicate information. Extra information may make planning more
strenuous, resulting in lower team scores on average.

Moreover, VAIN communication, while transparent, provides
a signal to the human just before the robot makes a sudden and
fast movement. Such explicit signals could convey to the user that
the robot could be capable of overriding the person to take an
unsafe action, contributing further to the ambience of physical
danger and a decrease in perceived safety. Based on our current
findings, we posit that VAIN communication should not be used in
fast-paced human-robot teaming systems; instead, robots should
be primarily defensive and avoid the appearance of conflicting
with a human’s autonomy. However, prior work [72] studying
sound caused by robots found that louder robots are described
as “scary" and “dangerous," indicating that other sound profiles of
VAIN communication could potentially lead to improvement.

Additionally, we found that VAIN communication from human
to the robot was rarely utilized, suggesting that participants felt
more comfortable communicating to the robot implicitly with their

body motion as opposed to explicitly declaring their intent with
voice in fast-paced tasks. While providing general feedback, some
participants noted that talking to the robot was redundant, as in-
tercepting the ball causes the robot to stop regardless. As such, we
recommend that agile collaborative systems be developed that can
infer human intent from physical motion rather than relying on
explicit communication. Nonetheless, it is possible other forms of
voice framework and design beside VAIN communication could
show benefits to using voice communication in agile collaboration.
Humans in agile team sports (volleyball, tennis doubles, etc.) all
incorporate some form of VAIN communication to avoid conflict,
so further exploration is needed to understand how to achieve
effective communication with robots.

Limitations – As indicated in Table 1, the success rate of the
high robot skill level is not perfect. The number of failures vary
across each trial, where the timing of these failures can alter the
subject’s perception of the robot’s skill. While not common, some
trials had a series of missed swings at the beginning of a sequence
on a robot with high skill. This can lead the subject to believe the
robot is poor performing, and thus receiving fewer attempts at the
ball for the rest of the sequence. Additionally, our participants were
largely students recruited from a university campus. The use of
deception in the study also creates a high-stakes environmentwhich
can create more pronounced effects on our findings compared to
a lax environment; however, we believe that our current design
more accurately represents real-world HRC scenarios where failure
results in negative consequences (e.g., a physical collision).

Future Work – In future work, we would like to conduct an
extension to this study to identify agile robot system characteristics
that lead to increased perceived safety, perceived trust, and HRC
performance. Our system was designed to conservatively avoid any
collision with the participants, and we plan to improve the system
with tighter safety boundaries to allow closer interactions.

6 CONCLUSION
In this work, we utilize a modified human-robot teaming, table-
tennis doubles task in a human-subject experiment to gain insights
that can inform the design of agile, collaborative robots. Specif-
ically, we study a mixed-initiative teaming scenario with quick
decision-making from humans and robots in a shared collaboration
space where either agent can successfully accomplish the task. We
investigate how robot voice sex, robot skill level, and deliberative
communication impact perceived safety and trust in agile, prox-
imate human-robot collaboration. We conduct a human-subjects
experiment with 42 participants and find robot skill is positively
correlated with trust, extending skill-trust assessment in prior stud-
ies to agile, proximate HRC. Furthermore, interestingly, we find
that VAIN communication degrades human-robot teaming perfor-
mance and decreases perceived safety, indicating the need for more
research enabling safe and trustworthy agile robots that operate in
proximity with humans.
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